
Some Experiments on Repeatability of Wolfram’s Rule 30

By: Rich MacDonald
Email: rich@clevercaboose.com
Last Modified: 10/22/2004

Introduction
Everyone knows Wolfram’s Rule30 as a basis for random number generation. It’s also a useful
“first-attempt” for someone getting their feet wet with cellular-automata programming.
However, some issues immediately come to mind when we code it:

1) What do we do about the “endpoints” of the cell row? Does the row grow forever or
‘wrap-around” as a ring.

2) How wide does the row need to be?

When I first started this document, I couldn’t find the answer on the internet so I ran some tests
myself. This document discusses the issues. When I was putting the document to bed I finally
found the link to the relevant page in Wolfram’s book. All can be found on p317,
http://www.wolframscience.com/nksonline/page-317

Wolfram’s answers are:

1) Use wrap-around

2) “A few hundred”

In essence, this document expands on a page of Wolfram’s book p260, found at
http://www.wolframscience.com/nksonline/page-260. However, I do go a step further in other
sections.

What do we do about the “endpoints” of the cell row?
I can think of three different ways to handle the endpoints:

1) “Wrap-around” as a ring, i.e., where the first cell is considered to be the neighbor of
the last. Some people call this a cylinder.

2) Never-ending expansion, i.e., where the row expands by 2 ever step. Wolfram
appears to use this option in his drawings of the rule evolution1, however, this is
impractical for a random-number generator, since each point is O(the number of
previous points), plus a significant RAM requirement. If I need a million random
numbers, the million’th point will have a row size of a million and two.

3) Fix the endpoints to the same value, e.g., false or blank.

1 In the Figure caption on http://www.wolframscience.com/nksonline/page-29, Wolfram states: “The
pattern produced continues to expand on both left and right, but only the part that fits across the page is
shown here.” By this I infer that he generates the full expanding width. Also, his pictures show that he is
definitely not using wrap-around.

Page 1 of 11

mailto:rich@clevercaboose.com
http://www.wolframscience.com/nksonline/page-317
http://www.wolframscience.com/nksonline/page-260
http://www.wolframscience.com/nksonline/page-29

It turns out that (3) is awful in terms of its periodicity. The generated pattern may be random (I
never bothered to check) but it has a very low “period”. If any cell row is ever identical to one
of the previous cell rows, thereafter the whole system will repeat forever. The generator may
have wonderful randomness properties, but it may have a low period, and this is something that
doesn’t seem to have been discussed in detail.

In the following, option 1 was used to deal with the endpoints.

Periodicy
I decided to run a simple test. Rule 30 is used for the cell generation. The starting row is all
cells white(false) except for a single cell that is black (true), i.e., the standard starting point for
the pictures in Wolfram’s work (http://www.wolframscience.com/nksonline/page-27). The
endpoints are handled via wrap-around (option 1). For a given Cell Width, we generate new
rows until a row is repeated. This was run for increasing widths until I ran out of RAM.

Table 1 lists the results. For a given width, the count is the generation step at which a row
repeated. The period is the difference between the count and the first occurrence of the
repeated row. In other words, a random number generator based on this approach will initially
generate a non-repeating succession of count values, then it will start repeating every period
values.

Table 1
Repetition Period of Rule 30 with wrap-around as a function of Cell Width

Width Count Period
3 3 1
4 8 8
5 6 5
6 9 1
7 4 4
8 41 40
9 73 72
10 22 15
11 177 154
12 126 102
13 272 260
14 1,428 1,428
15 1,502 1,455
16 6,074 6,016
17 10,902 10,846
18 3,569 2,844
19 553 247
20 3,912 3,420
21 2,317 597
22 4,481 3,256
23 39,410 38,249
24 187,063 185,040
25 590,313 588,425

Page 2 of 11

26 313,243 312,156
27 241,384 240,300
28 267,813 249,165
29 845,018 833,808
30 387,569 374,265
31 2,990,087 2,841,150
32 871,811 842,528
33 1,192,298 1,049,268
34 5,831,219 5,656,002
35 18,636,338 18,480,630
36 197,368 2,844

The results are shocking. Periodicity is very low. For example, if we used a width of 36, our
random number generator would repeat every 2,844 values.

Please note that I did not intentionally bias the table, given that the final row has such a
horrible result. It was simply as far as my 2MB RAM computer could go. I was able to confirm
that the count for width=37 is something greater than 21,000,000.

Figure 1 plots the period as a function of width. Overall the period increases with width, but
not smoothly. Compare this plot with the plot shown in Wolfram p260, found at
http://www.wolframscience.com/nksonline/page-260, the left-most plot on the 2nd row labeled
“rule 30”. Interestingly his plot goes to cell width = 47 and a period of several billion. Wonder
what kind of hardware he was able to get his hands on…

Page 3 of 11

http://www.wolframscience.com/nksonline/page-260

Figure 1
Repetition Period as a Function of Cell Width

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0 5 10 15 20 25 30 35 40

Width

Pe
rio

d

Page 4 of 11

Figure 2 plots the ratio of the periods between any two widths, i.e., the increase in the period as
a function of width; roughly, the derivative of the period as a function of width. Nothing really
interesting here, just checking to see if the irregular nature of the plot is “random”; it looks ok.

Figure 2
Increase of the Repetition Period as a Function of Cell Width

0.0001

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30 35 40

Width

Pe
rio

d(
W

id
th

) /
 P

er
io

d(
W

id
th

-1
)

Page 5 of 11

Figure 3 plots the coverage of the generator as a function of width. The coverage is the count
divided by the “space” of the cells, i.e., 2width. This shows that as width increases, coverage
decreases.

Figure 3
Coverage as a Function of Cell Width

0.00000001

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35 40

Width

C
ov

er
ag

e

All these results cast doubt on our random number generator. They indicate that we cannot use
the approach with low widths. Or possibly the wrap-around approach is at fault. Now if our
random number generator uses a width of 100, its possible that this is a non-issue, i.e., the
period may be so great that we never need to worry about it. However, Figure 3 indicates that
we should not take this for granted, since coverage is likely to be infinitesimal at that point.

Unfortunately, it is hard to test this. With a 2GB RAM machine and width=37, I was able to
generate 21,000,000 test points before hitting the wall. To go any higher, I have to switch to a
RDBMS to check for repetition. I tried it, but this is orders-of-magnitude slower and I’d have
to wait days to get the next point. No thanks. I’ve basically gone as far as I can go in this test.
Plus I’ve (belatedly) found Wolfram’s plot of the same data all the way up to width=47.

Fixing the endpoints to the same value
Instead of wrapping the endpoints of the cell row, I repeated the above test fixing the endpoints
to false. Results were appalling, with periodicity no greater than 150 for width < 64.
Obviously, this approach is not correct.

Page 6 of 11

Expanding the endpoints at each step
I’d like to run the test where the endpoints are handled by expanding the row at each step.
Unfortunately I don’t know how to do it and what to conclude from the expected results. I
know the approach is impractical in practice. Plus, there is no clear way to check for
periodicity, since no row is ever the same as any of its predecessors. Probably this means that
there is no such thing as repetition. We could arbitrarily pick some fixed range “inside” the row
and check for repetition, but even if there is a match, the influences from outside this internal
range will affect the future values of the internal range, so this proves nothing. I’m tempted to
assert that no periodicity will be encountered, so I guess we can all breathe a sign of relief and
grant Wolfram that his “New Kind of Science” still holds in an expanding universe ☺

Starting from Random Values
In the above tests, my initial row seed was to set all but one cell to zero/false. In practice,
random number generators may seed the initial row randomly. Also, using random initial rows
we can run this test many times to search for “average periodicity”. In other words, my first
test found one period, but within the actual “space” of the model there are likely to be many
periods. Repeating the test with many initial random seeds allows us to estimate the size of
these periods.

So I repeated the test with random initial row seeds. I used a Boolean random number
generator based on rule 30 with width=100, endpoints as wrap-around, and all values but one
of the initial row being false. This generator was restarted at each new width. I ran this test for
a range of widths and repeated the test 100 times at each width. In other words, I picked a
single width, seeded the Boolean random number generator, generated an initial cell row
randomly, stepped the cell row until it repeated, then generated another initial cell row and
repeated this many times. I did this for a series of widths. Of interest was the ‘average” value
of the periodicity, which gives us a rough idea of the periodicity of the model for that width.
Also of interest was the lowest value of the periodicity, to give us an idea of the worst-case.
Note that this lowest value is not the true lowest value because I could only generate a finite
number of tests and therefore did not completely cover the full space of the model.

Page 7 of 11

Figure 4
”Scatter” of Periodicity as a function of Cell Width (100 Runs per Width)

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 5 10 15 20 25 30 35 40

Width

Pe
rio

d

Figure 4 shows the results. In practice, far fewer than 100 periods were encountered (see
Figure 5), but all 100 runs eventually ran into one of these periods.

Page 8 of 11

Figure 5
Unique Periods Encountered (100 runs per Width)

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

Width

U
ni

qu
e

Pe
rio

ds
 E

nc
ou

nt
er

ed

Figure 6 shows the same results as Figure 4 with the “average” (simply the mean of all the
periods) and minimum periods. I have also plotted the “coverage”, which in this context can be
interpreted as the period if there were no repetitions, i.e., the theoretical maximum period.
Clearly, the “average” or “encountered” periodicity is much less than the theoretical maximum,
and while the average is increasing with cell width, it may be decreasingly increasing. As
Figure 4 shows, the greater the cell width the more repetition points we will encounter. Once
again, however, we are far too far away from practical cell widths to extrapolate, but the trends
are a cause for concern.

Page 9 of 11

Figure 6
”Average” and Minimum Periodicity as a function of Cell Width

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

0 5 10 15 20 25 30 35

Width

Pe
rio

d
Average
Minimum
2^Width
Orig (1 black cell)

Eyeballing Wolfram’s page 260
My Figure 1 compares with Wolfram’s at http://www.wolframscience.com/nksonline/page-
260. He is also able to extend the run much further than I. However, I think my idea of
repeating the test with random starting points provides an additional check. Thus, on Figure 6 I
have also plotted the results from the original run, i.e., with one black cell and the rest white.
Note that this curve is practically on top of the average curve, meaning that the original test
captured the ‘average periodicity” rather well. This means that we can extrapolate Wolfram’s
figure as a good indicator of the average periodicity as well.

Future Work
More interesting things I guess, but I’ve milked this issue for more than its worth. Does
anyone know a good method for converting random Boolean values to random, integers,
longs, floats and doubles?

Conclusions
In a nutshell, rule 30 with end-point wrap-around has a far lower period of repetition than
people may have realized. Not Wolfram, obviously as he already did this study ☺.
Nevertheless, his single plot is easy to overlook and the numbers are unacceptable for
anything less than a cell width of 45 or so.

It is also fair to say that there is a small (ok, very small) but finite possibility that some
unlucky combinations will have very poor randomness properties. For example, who

Page 10 of 11

http://www.wolframscience.com/nksonline/page-260
http://www.wolframscience.com/nksonline/page-260

would have thought that for a cell width = 33, there exists a period of only 40!2 Who is to
say that this isn’t also the case for cell width = “a few hundred”. Ok Wolfram, I’ll grant
that you’re probably correct when you say that “even with the fastest forseeable
computers, the actual period of repetition will typically be more than a billion billion
times the age of the universe”3, but are you really really sure :-?

2 Its there, take a look at Figure 4.
3 http://www.wolframscience.com/nksonline/page-317

Page 11 of 11

http://www.wolframscience.com/nksonline/page-317

	Some Experiments on Repeatability of Wolfram’s Rule 30
	Introduction
	What do we do about the “endpoints” of the cell row?
	Periodicy
	Fixing the endpoints to the same value
	Expanding the endpoints at each step
	Starting from Random Values
	Eyeballing Wolfram’s page 260
	Future Work
	Conclusions

